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The rise of a body through a rotating fluid in a container 
of finite length 
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California Institute of Technology, Pasadena, California 
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The drag on an axisymmetric body rising through a rotating fluid of small 
viscosity rotating about a vertical axis is calculated on the assumption that there 
is a Taylor column ahead of and behind the body, in which the geostrophic 
flow is determined by compatibility conditions on the Ekman boundary-layers 
on the body and the end surfaces. It is assumed that inertia effects may be 
neglected. Estimates are given of the conditions for which the theory should be 
valid. 

1. Physical discussion 
When a body moves slowly through a rotating liquid parallel to the axis of 

rotation it pushes ahead of it and pulls behind it a column of fluid in which there 
is no axial motion relative to the body. This effect was predicted by Taylor (1922), 
who confirmed it experimentally. 

If the fluid is bounded axially this Taylor column will collide with these boun- 
daries. Fluid in the Taylor column ahead of the body is pushed into a thin Ekman 
layer on the boundary, where it is deflected outwards (see figure 1). In a fluid of 
small viscosity, the decelerations of the axial flow in this Ekman layer and in a 
similar one on the body involve contraction of the vortex tubes of the rotation, 
so that negative relative axial vorticity appears upstream of the body. In  the 
downstream Ekman layers there are accelerations, so that positive relative axial 
vorticity appears in the downstream column. The actual amount is given by the 
Ekman compatibility relation between the flux out of the Ekman layer and the 
relative vorticity outside it which shows that the relative axial vorticity is of 
order U(Q/v ) i ,  where U is the axial speed of the body, i2 is the rotation rate 
and v is the kinematic viscosity. There is thus a swirling motion with speed 
O(RUQ*/v$ where R is the body radius, opposing the rotation ahead of the body 
and a swirling motion of comparable order augmenting the rotation behind it. 
Thus in consequence of the geostrophic balance a smaller radial pressure gradient 
is required to contain the flow in the upstream column and a larger radial pressure 
gradient is required for containment downstream. Now the pressure outside 
the column is fixed so that the mean pressure upstream is increased and that 

t Permanent address : Department of Mathematics, Imperial College, London. 
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downstream decreased by an amount p0R2U@/v* where po is the density of the 
liquid?. Thus the body experiences a drag D of orderpoR4U!2~/v4. In  dimension- 
less form, D/poC12R4 cc ROE-4, where Ro = UlnR is the Rossby number and 
E = v/QR2 is the Ekman number. The object of the present note is t o  calculate a - Ekman layer (absent h r  free surface- 

LEkman layer 

FIGURE 1. Sketch of motion produced by rising body. 

precise value of this drag for axisymmetric bodies. It is assumed that the Ekman 
number is small enough so that the effects of viscosity are confined to the Ekman 
layers and to thin shear layers at  the Taylor column boundary. Furthermore, it is 
assumed that the Rossby number is so small that the flow is geostrophically 
balanced outside the viscous regions. Then it is a straightforward matter to 
calculate the drag by going through a quantitative form of the above argument. 
This is done in 5 2 both for a container with rigid ends perpendicular to the rotation 
axis, and for a container rotating about a vertical axis whose upper surface is 
free. In this latter case there can be no Ekman layer at  the free surface, so that 
there can be no axial motion outside the Ekman layer on the upper surface of the 

t Pressure is measured relative to the pressure in uniform rigid body rotation. 
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body. Thus this Ekman layer must be twice as intense to accomplish the decelera- 
tion, so that the pressure on the upper surface is approximately doubled. Thus 
there is about a 50% larger drag on the body when the container has a free 
surface. t 

In 9 3, we give estimates of the conditions for which the theory should be valid. 
The following paper (Maxworthy 1967) describes some experiments and com- 
pares the theory with observations. 

2. Derivation of the drag formulae 
We use cylindrical polar co-ordinates ( r ,  8, x )  with Oz parallel to the axis of 

rotation. The velocity components are (u, v, w). The shape of the side wall of the 
container does not affect the flow, but we assume that the base of the container 
is a rigid horizontal plane while the upper boundary is either a rigid horizontal 
plane also or a (slightly curved) free surface. 

We shall consider only axisymmetric bodies and also suppose the body has 
fore and aft symmetry. The latter restriction is easily removed. The equation 
of the body is z = & f ( r ) ,  0 4 r < R, relative to an origin moving with the 
body. 

The quantity of interest is the drag D. If we use a subscript + to denote flow 
variables in the space z > 0 and a subscript - to denote flow variable in x < 0 
wehnve that 

R 

the contribution from the viscous stress in the Ekman layer being negligible.$ 
Furthermore, since the change in pressure across the Ekman layer is also negli- 
gible for small Ekman number, we need to determine the pressure field only in 
the geostrophic interior. Here all the flow quantities are independent of z and we 
have - 2p, Qv = - dp/dr,  which expresses the geostrophic balance. Thus our first 
step must be to determine the swirl velocity v(r).$ 

This is accomplished in a well known way by applying the Ekman compati- 
bility relation to the Ekman layers on the container and boundaries and on the 
body. We suppose the body is rising with velocity U and has angular velocity 
d2 relative to the container. 

Then for 0 < T < R we have the following relations between the axial velocity 

t For a disk the drag is exactly 50% higher, since the Ekman layers on the disk and on 
the solid ends are identical. 

$ The drag on the body is balanced by the normal stresses over the container walls, 
the rate of change of vertical momentum of the fluid being smaller by a factor a t  mobt 
proportional to the Rossby number, so that the drag can be evaluated by integrating the 
pressure over the flat end walls where the viscous normal stress is smaller by a factor of 
order E. 

3 The exact velocity field is a function of time, since the body is moving relative to the 
walls, but for sufficiently small U (the precise condition is Ro < E*) the flow field is quasi- 
steady and the time dependence need not be considered explicitly. 
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w,= - _ _ _ _  Q (rv+) (upper surface of container), 
2hr  dr 

1 I d  
2hr dr w.,+ - U = -- - {(YO+ - m2Q) (1 +f’”l} (upper surface of body), 

(2.1) 
rv- - er252) (1  +f‘”)9 (lower surface of body), 

1 I d  
2Ar dr 

w - - u =  - - - - { (  

1 I d  
w- = - -- (rv-) 

2hr dr 
(bottom wall of container), 

where Q is 0 for a free upper surface (since the free surface cannot support an 
Ekman layer) and is 1 for a rigid upper surface, and h = ( Q / v ) i .  For r > R we 
have only the first and last conditions which then show immediately that 

w = v = 0  for r > R ,  

so there is no relative motion outside the Taylor co1umn.t 

r[&( 1 + f +  - Uh] 
For 0 e r < R we find 

v+ = 
Q + (1 + f t 2 ) *  

and v- = r[eQ( 1 + f ’ z ) ) +  Uh] .  
1 + (1 +f’”)“ 

If we integrate the formula for the drag by parts we get 

D = nR2{p+(R) -y-(R)} - n r2 ~ - -- dr 1: [:+ 2-1 
Since the geostrophic balance equation holds for the radial pressure gradient 
even in the shear layer we have 

P(R + 8) = P(R) + O(P0 Q V A  

where S is the shear layer thickness and v g  is the magnitude of the swirl velocity 
in the shear layer. But p is constant outside the shear layer, so 

P + m  -PAR) = O(P0 Qv, 8). 

It can be shown that vg is not greater than the swirl velocity in the Taylor 
column, so the pressure difference makes a negligible contribution to the drag. 
To calculate the integral we use the geostrophic balance equation and the above 
expressions for v+ and v-. Thus we obtain 

R r3dr s 0 1 + (1 +f’”)’ 
D = 47Tp, QhU 

if the container has a rigid lid and 

t The geostrophic equations allow the irrotational flow field w = K / r ,  but this velocity 
field requires Ekman layers which transport fluid to or from infinity and would therefore 
violate the conservation of mass. 
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if the liquid has a free upper surface. The fact that the drag is independent of the 
spin in the former case is a consequence of the fore and aft symmetry. 

Quantitative experiments on the motion of bodies in a contained rotating 
fluid have been done by releasing buoyant spheres at the bottom of the con- 
tainer (see following paper, Maxworthy 1967). Clearly a quasisteady state in 
which the buoyancy is balanced by the drag and in which the net torque is zero 
will be attained. Thus in order to compare our results for the drag we must 
determine BQ by the condition that the torque is zero. Now in a steady state, the 
torque T on the rising body is equal and opposite to the torque on the container 
ends. The 8 component of stress on the lower plane boundary due to the Ekman 
layer is, from the familiar Ekman layer solution, 

78 = phv- 

so that, adding the contributions from the top and bottom surfaces, 

T = -phs" 27rr2(v- + Qv,) dr, 
0 

since the contributionsfrom the regions outside the Taylor columns are negligible. 
Using the explicit formulae for v we find that 

when both ends are rigid, and 

when the upper surface is free. 
In the symmetric case T is independent of U and vanishes when BQ = 0,  so 

that a freely rising body with fore-and-aft symmetry will rotate with the con- 
tainer. However, when the upper surface is free, the freely rising body will, 
since both integrals in the expression for the torque are positive, rotate more 
slowly than the container. 

For a sphere of radius R we find that for both ends rigid 

D 43 
- = -7~QuUhR4 
Po 105 

and that when the upper surface is free 

D 353 43 
- = __ nQUhR4 - - ? T B Q ~ R ~ .  
Po 630 210 

The torque vanishes in this case when 

43 
62 

€Q = -- U h  

and the drag is then given by 

- =-- 3919~QUhR4. 
po 5580 

(2-4) 

Note that the drag with a free upper surface is larger, as predicted in 3 1. 
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3. Discussion 
We will not discuss in detail the structure of the shear layer bounding the Tay- 

lor column, since the analysis is rather long and will be presented elsewhere. We 
will just mention one or two features which are important to the present study. 

The shear layer for a blunt body has the sandwich structure discovered by 
Stewartson (1966) and consists of an inner layer of thickness 84 = RE), and two 
outer layers of thickness 8i = RE& and 8+ = RE$. The outer layers are associated 
with radial variations in swirl velocity. The inner layer is, however, unusual in 
having larger axial velocities than would be anticipated if (as has occasionally 
been asserted) its role were only to complete the circulation and to leading order 
the velocity field is a recirculating eddy. In  fact, our analysis shows that in 
general the axial velocity in the inner layer is O( UE-A-). 

However, the case of a free body with fore-and-aft symmetry rising between 
plane rigid end walls is special, since it does not rotate relative to the fluid. 
Consequently, as (2.2) and (2.3) show, the geostrophic swirl velocity vanishes 
at  the boundary of the Taylor column and the intensity of the shear layers is 
reduced. Our analysis shows that the recirculating axial velocity in the inner 
layer is now O( UE+i). 

Our picture of the flow is given in figure 1. A necessary condition for the picture 
to hold is that the height of the container should be large compared with the 
Ekman layer thickness and the width of the outer shear layer should be small 
compared with €2, and from a detailed analysis 

The second condition in (3.1) imposes an upper bound on the distance between 
the end walls. (As H increases past this value, the flow pattern ceases to look 
like figure 1 until the walls are so far away that they cease to affect the flow. A 
geostrophic Taylor column then reappears, but it has a different structure and 
the drag is also an order of magnitude less. It can be shown that the end walls 
are unimportant if HIR 9 E-l.) 

A further oondition for the calculation to be accurate is that inertia effects 
should be negligible. The relative order of magnitude of the inertia and Coriolis 
terms depends upon the region of flow. Thus inside the Taylor column and 
Ekman layers, the largest inertia term is the centrifugal force po w2, which is small 
compared with the Coriolis force poQw if (U2 /Qv)  < 1, on substituting the 
estimated magnitude of w. This condition can be written 

R ~ E - *  < 1, (3.2) 

in terms of the Rossby number and Ekman number. 
The magnitude of the inertia effects in the shear layers are somewhat harder 

to estimate. However, investigation shows that inertia is generally negligible 
if it is small in the azimuthal momentum equation, and this requires av/ar < Q. 
Putting in estimated magnitudes for the shear layer which result from a detailed 
analysis, we find ROE-+ < (H/R)S (3.3) 
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for a free sphere rising with a rigid upper surface, and 

if the upper surface is free. 
If we define criticalRossbynumbers by (3.3) and (3.4) theirratio is (H/R)i%Eh,  

which isalmost unity in any real situation. Inertia effects are probably more 
important when there is relative rotation, not because of any difference between 
(2.2) and (3.4), but because the velocity field has a different structure. Note that 
these conditions are more restrictive than (3.2) and the condition ROE-4 4 1 
given by Proudman (1956) for linearization in the flow between differentially 
rotating spherical surfaces. If (3.3) and (3.4) are not satisfied, the flow is unlikely 
to resemble that shown in figure 1 and the drag calculation will be in error. 

Note that there is a Taylor column ahead of the body when the upper surface 
of the fluid is free, but it contains only an azimuthal velocity and not an axial 
velocity. If the surface of the body is also free, as would be the case for an air 

ROE-2 < (H/R) t  (3.4) 

C 
U 

FIGURE 2. Drag of an air bubble as a function of its velocity of rise in st 
uniformly rotating fluid. 

bubble, then there can be no Ekman layer on the upper surface of the body and 
there can be no flow out of the forward Taylor column. Thus if for an air bubble 
the flow configuration is of the type sketched in figure 1, the Taylor column above 
the body has to be of constant length, which means that the bubble can not rise, 
or that the drag coefficient is infinite.? This apparently paradoxical result raises 
the question whether the flow is of this type where the force on the body is given 
and not the velocity, as is the case for the experiments where a buoyant body 
is released in a rotating tank. There is the possibility that the body rises with a 
Rossby number greater than unity, in which case the drag is given to a first 
approximation by the theory for non-rotating fluids and may be smaller than the 

t It is necessary to  assume that the surface tension is sufficiently large to keep the bubble 
roughly spherical. 

41 Fluid Me&. 31 
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drag at  the much lower speeds required for the Taylor column to exist. For an 
air bubble, the curve of drag becomes infinite as the velocity and therefore the 
Rossby number tends to zero and increases with the velocity when rotation is 
unimportant (see figure 2). However, we are unable to estimate the position 
and value of the minimum. 

For the case of a rigid body, the curve of drag against velocity is probably 
monotonic for the following reasons. For Ro 2 1, we have D’ N Ro2 on the assum- 
ption that the drag coefficient is of order unity, where D’ = DpQ2R4. For (3.3) 
and (3.4) [which includes the case ROE-* < 1 because of the restriction on 
H/R] ,  we have D’ - Ro E-9. Thus D‘ < 1 in the regime of validity of the low 
Rossby number flow, and there is no reason to expect a minimum in the transi- 
tion region to high Rossby number. 

There is of course always the possibility that the steady rectilinear motion 
may be unstable, particularly for a bubble, but this is a much harder problem. 
The stability of the shear layers is also an interesting question. 

This research was partially supported by the Office of Naval Research under 
Contract Now 220(56). 
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